๐ฏ Agentic RAG: Active Reasoning in Knowledge Search
๐ฟ Growing Concept
Section titled โ๐ฟ Growing ConceptโLabel: From Passive Retrieval to Active Reasoning
Agentic RAG transforms agents from passive recipients of retrieved data into active, reasoning participants in the search for knowledge. Instead of blindly accepting the first retrieval results, agents can reason about what they need, reformulate queries, and validate information.
What is Agentic RAG?
Section titled โWhat is Agentic RAG?โThe Evolution
Section titled โThe EvolutionโTraditional RAG: Agentic RAG:โโโโโโโโโโโโ โโโโโโโโโโโโโ Query โ โ Query โโโโโโโฌโโโโโโ โโโโโโฌโโโโโโ โ โ โผ โผโโโโโโโโโโโโ โโโโโโโโโโโโโ Retrieve โ โ Analyze โโโโโโโโโโฌโโโโโโ โ Need โ โ โ โโโโโโฌโโโโโโ โ โ โ โ โผ โผ โโโโโโโโโโโโโ โโโโโโโโโโโโ โโ Generate โ โ Retrieve โ โโโโโโโโโโโโโ โโโโโโฌโโโโโโ โ โ โ โผ โ โโโโโโโโโโโโ โ โ Validate โ โ โโโโโโฌโโโโโโ โ โ โ โโโโโโผโโโโโโ โ โSufficient?โโโโ โโโโโโฌโโโโโโ No โ Yes โผ โโโโโโโโโโโโ โ Generate โ โโโโโโโโโโโโ๐ก Key Capabilities
Section titled โ๐ก Key Capabilitiesโ1. Query Decomposition
Section titled โ1. Query DecompositionโBreaking complex queries into manageable sub-queries:
class AgenticRetriever: """ Agentic retrieval system with reasoning capabilities """ def __init__(self, vector_store, llm): self.vector_store = vector_store self.llm = llm self.reasoning_engine = ReasoningEngine(llm)
async def decompose_query(self, complex_query: str) -> List[str]: """ Break down complex query into sub-queries """ decomposition_prompt = f""" Break down this complex question into 3-5 simpler sub-questions that can be answered independently:
Question: {complex_query}
Sub-questions (one per line): """
response = await self.llm.generate(decomposition_prompt) sub_queries = [q.strip() for q in response.strip().split('\n') if q.strip()]
return sub_queries
async def retrieve_for_subquery(self, sub_query: str) -> List[dict]: """ Retrieve documents for a single sub-query """ # Multiple retrieval strategies results = []
# Strategy 1: Direct semantic search semantic_results = await self.vector_store.search(sub_query, top_k=3) results.extend(semantic_results)
# Strategy 2: Reformulated query reformulated = await self.reformulate_query(sub_query) if reformulated != sub_query: alt_results = await self.vector_store.search(reformulated, top_k=2) results.extend(alt_results)
# Deduplicate and rank return self.deduplicate_and_rank(results)
async def reformulate_query(self, query: str) -> str: """ Reformulate query for better retrieval """ prompt = f""" Reformulate this query to improve search results. Use synonyms and related terms:
Original: {query} Reformulated: """
return await self.llm.generate(prompt)
# Example usageagentic = AgenticRetriever(vector_store, llm)
# Complex query that needs decompositioncomplex_query = """How does our company's return policy compare to industry standards,and what are the financial implications of extending the return window?"""
# Agent breaks it downsub_queries = await agentic.decompose_query(complex_query)# Result:# 1. "What is our company's current return policy?"# 2. "What are typical return policies in our industry?"# 3. "What are the costs associated with product returns?"# 4. "How does return window length affect return rates?"2. Self-Reflection and Validation
Section titled โ2. Self-Reflection and ValidationโAgents validate retrieved information quality:
class SelfReflectingRAG: """ RAG system that validates its own retrievals """ async def retrieve_with_validation(self, query: str) -> dict: """ Retrieve and validate information quality """ # Initial retrieval results = await self.vector_store.search(query, top_k=5)
# Self-reflection: Are results relevant? validation = await self.validate_results(query, results)
if validation['confidence'] < 0.7: # Results not good enough, try different approach results = await self.advanced_retrieval(query, validation['issues'])
return { "results": results, "confidence": validation['confidence'], "reasoning": validation['reasoning'] }
async def validate_results(self, query: str, results: List[dict]) -> dict: """ Agent validates retrieval quality """ validation_prompt = f""" Query: {query}
Retrieved documents: {self.format_results(results)}
Evaluate: 1. Do these documents answer the query? (Yes/No/Partially) 2. What's missing? 3. Confidence score (0-1):
Respond in JSON format. """
response = await self.llm.generate(validation_prompt) validation = json.loads(response)
return { 'confidence': validation.get('confidence', 0), 'issues': validation.get('missing', []), 'reasoning': validation.get('reasoning', '') }
async def advanced_retrieval(self, query: str, issues: List[str]) -> List[dict]: """ Try alternative retrieval strategies based on identified issues """ strategies = []
if "specific numbers" in str(issues): strategies.append("numeric_search")
if "recent information" in str(issues): strategies.append("time_filtered_search")
if "comparative data" in str(issues): strategies.append("comparative_search")
# Execute strategies all_results = [] for strategy in strategies: results = await self.execute_strategy(strategy, query) all_results.extend(results)
return self.rank_and_merge(all_results)3. Iterative Refinement
Section titled โ3. Iterative RefinementโAgents refine their search based on intermediate results:
class IterativeRAG: """ RAG that iteratively refines its knowledge gathering """ async def iterative_search(self, query: str, max_iterations: int = 3) -> dict: """ Iteratively gather and refine information """ knowledge = [] current_query = query
for iteration in range(max_iterations): # Retrieve new information results = await self.vector_store.search(current_query, top_k=3) knowledge.extend(results)
# Analyze knowledge gaps analysis = await self.analyze_knowledge_state(query, knowledge)
if analysis['is_sufficient']: break
# Generate refined query for next iteration current_query = await self.generate_followup_query( original_query=query, current_knowledge=knowledge, gaps=analysis['gaps'] )
print(f"Iteration {iteration + 1}: Searching for: {current_query}")
return { "knowledge": knowledge, "iterations": iteration + 1, "final_confidence": analysis['confidence'] }
async def analyze_knowledge_state(self, query: str, knowledge: List[dict]) -> dict: """ Determine if we have enough information """ analysis_prompt = f""" Original question: {query}
Information gathered so far: {self.summarize_knowledge(knowledge)}
Analysis: 1. Can we answer the original question? (Yes/No/Partially) 2. What critical information is still missing? 3. Confidence level (0-1):
Respond in JSON. """
response = await self.llm.generate(analysis_prompt) analysis = json.loads(response)
return { 'is_sufficient': analysis.get('can_answer') == 'Yes', 'gaps': analysis.get('missing', []), 'confidence': analysis.get('confidence', 0) }
async def generate_followup_query(self, original_query: str, current_knowledge: List[dict], gaps: List[str]) -> str: """ Generate refined query to fill knowledge gaps """ prompt = f""" Original question: {original_query}
We already know: {self.summarize_knowledge(current_knowledge)}
What we're still missing: {', '.join(gaps)}
Generate a focused search query to find the missing information: """
return await self.llm.generate(prompt)๐ฌ Deep Dive: Multi-Strategy Retrieval
Section titled โ๐ฌ Deep Dive: Multi-Strategy RetrievalโIntelligent Strategy Selection
Section titled โIntelligent Strategy Selectionโclass MultiStrategyAgenticRAG: """ Agentic RAG that selects optimal retrieval strategies """ def __init__(self): self.strategies = { 'semantic': SemanticSearch(), 'keyword': KeywordSearch(), 'hybrid': HybridSearch(), 'graph': GraphSearch(), 'temporal': TemporalSearch() }
async def adaptive_retrieve(self, query: str) -> List[dict]: """ Dynamically select and combine retrieval strategies """ # Analyze query characteristics query_analysis = await self.analyze_query(query)
# Select appropriate strategies selected_strategies = self.select_strategies(query_analysis)
# Execute strategies in parallel results = await asyncio.gather(*[ self.execute_strategy(strategy, query) for strategy in selected_strategies ])
# Intelligently merge results merged = await self.intelligent_merge(results, query_analysis)
return merged
async def analyze_query(self, query: str) -> dict: """ Understand query intent and characteristics """ analysis_prompt = f""" Analyze this query: "{query}"
Determine: 1. Intent: [factual, comparative, analytical, procedural] 2. Temporal aspect: [recent, historical, timeless] 3. Complexity: [simple, moderate, complex] 4. Domain: [general, technical, specific]
JSON response: """
response = await self.llm.generate(analysis_prompt) return json.loads(response)
def select_strategies(self, analysis: dict) -> List[str]: """ Choose optimal strategies based on query analysis """ strategies = ['semantic'] # Always include semantic
if analysis['temporal'] == 'recent': strategies.append('temporal')
if analysis['complexity'] == 'complex': strategies.extend(['hybrid', 'graph'])
if 'technical' in analysis['domain']: strategies.append('keyword')
return strategies
async def intelligent_merge(self, results_by_strategy: List[List[dict]], analysis: dict) -> List[dict]: """ Merge results with strategy-aware ranking """ # Weight strategies based on query analysis weights = self.calculate_strategy_weights(analysis)
# Combine with weighted scoring scored_docs = {} for strategy_name, results in zip(self.strategies.keys(), results_by_strategy): weight = weights.get(strategy_name, 1.0) for rank, doc in enumerate(results): doc_id = doc['id'] score = weight * (1 / (rank + 1)) scored_docs[doc_id] = scored_docs.get(doc_id, 0) + score
# Return top-ranked documents top_docs = sorted(scored_docs.items(), key=lambda x: x[1], reverse=True) return [self.get_document(doc_id) for doc_id, _ in top_docs[:5]]โก Quick Win: Basic Agentic Enhancement
Section titled โโก Quick Win: Basic Agentic EnhancementโAdd simple reasoning to existing RAG:
class EnhancedRAG: """Simple agentic improvements to basic RAG"""
async def smart_retrieve(self, query: str) -> dict: # 1. Generate alternative phrasings alternatives = [ query, await self.rephrase(query), await self.expand_with_synonyms(query) ]
# 2. Retrieve with each all_results = [] for alt_query in alternatives: results = await self.vector_store.search(alt_query, top_k=3) all_results.extend(results)
# 3. Deduplicate and rank unique_results = self.deduplicate(all_results)
# 4. Validate relevance filtered = [r for r in unique_results if await self.is_relevant(query, r)]
return filtered[:5]๐ณ Advanced: Reasoning Chains
Section titled โ๐ณ Advanced: Reasoning ChainsโChain-of-Thought Retrieval
Section titled โChain-of-Thought Retrievalโclass ChainOfThoughtRAG: """ RAG with explicit reasoning chains """ async def retrieve_with_reasoning(self, query: str) -> dict: """ Show reasoning process explicitly """ reasoning_chain = []
# Step 1: Understand query understanding = await self.understand_query(query) reasoning_chain.append({ "step": "understanding", "thought": f"This query is asking for {understanding['intent']}" })
# Step 2: Plan retrieval plan = await self.plan_retrieval(understanding) reasoning_chain.append({ "step": "planning", "thought": f"I'll search for: {plan['search_terms']}" })
# Step 3: Execute and evaluate results = await self.vector_store.search(plan['search_terms']) evaluation = await self.evaluate_results(results, query) reasoning_chain.append({ "step": "evaluation", "thought": f"Found {len(results)} results. Relevance: {evaluation['score']}" })
# Step 4: Decide if more retrieval needed if evaluation['score'] < 0.8: reasoning_chain.append({ "step": "refinement", "thought": "Results insufficient, trying alternative approach" }) results = await self.alternative_retrieval(query, evaluation)
return { "results": results, "reasoning_chain": reasoning_chain }๐ฏ Key Takeaways
Section titled โ๐ฏ Key Takeawaysโ- Agentic RAG adds reasoning to the retrieval process
- Self-reflection improves retrieval quality
- Iterative refinement fills knowledge gaps
- Strategy selection optimizes for query type
- Transparency through reasoning chains builds trust
When to Use Agentic RAG
Section titled โWhen to Use Agentic RAGโUse Traditional RAG When:
Section titled โUse Traditional RAG When:โ- Queries are straightforward
- Speed is critical
- Information is well-organized
Use Agentic RAG When:
Section titled โUse Agentic RAG When:โ- Queries are complex or ambiguous
- Information quality is paramount
- Multiple perspectives needed
- Knowledge is fragmented
Next Steps
Section titled โNext StepsโContinue to GraphRAG to learn how to leverage relationship graphs for even more sophisticated knowledge retrieval.
๐ก Remember: Agentic RAG is about making your agent an active participant in finding the right information, not just a passive consumer.