Skip to content
GitHub

🚀 Full-Stack AI Applications

import ContributionButtons from ’../../../../components/ContributionButtons.astro’; import UsageTracker from ’../../../../components/UsageTracker.astro’; import AuthorshipBadge from ’../../../../components/AuthorshipBadge.astro’; import GreaterGoodBadge from ’../../../../components/GreaterGoodBadge.astro’; import CookbookAsCode from ’../../../../components/CookbookAsCode.astro’; import LearningPath from ’../../../../components/LearningPath.astro’; import InteractiveQuiz from ’../../../../components/InteractiveQuiz.astro’; import UnderstandingButton from ’../../../../components/UnderstandingButton.astro’;

Label: The Full-Stack AI Architectural Pattern

Building a “Full-Stack AI” application is fundamentally different from traditional web development. While traditional apps are primarily CRUD (Create, Read, Update, Delete) systems, AI applications are Probabilistic Reasoning Systems. This means your architecture must handle non-deterministic outputs, long-running processes (streaming), and complex state management across the client and server.

  1. Orchestration Layer: Python (LangChain/LlamaIndex) or Node.js (Vercel AI SDK)
  2. Logic Layer: AI Agents & Compound Systems
  3. Data Layer: Vector Databases (Pinecone/Milvus) + Relational DBs (Postgres/Supabase)
  4. Interface Layer: React/Next.js with real-time streaming

Streaming is not a luxury in AI apps; it’s a UX requirement. Waiting 30 seconds for a full LLM response causes user abandonment.

// frontend/hooks/useChat.ts (Next.js + Vercel AI SDK)
import { useChat } from 'ai/react';
export default function Chat() {
const { messages, input, handleInputChange, handleSubmit } = useChat({
api: '/api/chat',
onResponse: (response) => {
console.log('Started receiving response');
},
});
return (
<div className="flex flex-col w-full max-w-md py-24 mx-auto stretch">
{messages.map(m => (
<div key={m.id} className="whitespace-pre-wrap">
{m.role === 'user' ? 'User: ' : 'AI: '}
{m.content}
</div>
))}
<form onSubmit={handleSubmit}>
<input
className="fixed bottom-0 w-full max-w-md p-2 mb-8 border border-gray-300 rounded shadow-xl"
value={input}
placeholder="Say something..."
onChange={handleInputChange}
/>
</form>
</div>
);
}

Unlike simple chat-bots, AI agents often need to maintain asynchronous state. If an agent is searching the web, it shouldn’t block the UI.

# backend/agent_service.py (FastAPI + LangGraph)
from langgraph.graph import StateGraph, END
from typing import TypedDict, List
class AgentState(TypedDict):
task: str
plan: List[str]
results: List[str]
is_complete: bool
def planner(state: AgentState):
# Logic to break down task
return {"plan": ["search_web", "summarize"]}
def researcher(state: AgentState):
# Logic to perform research
return {"results": ["Found info on X"]}
workflow = StateGraph(AgentState)
workflow.add_node("planner", planner)
workflow.add_node("researcher", researcher)
workflow.set_entry_point("planner")
workflow.add_edge("planner", "researcher")
workflow.add_edge("researcher", END)
app = workflow.compile()

You can’t rely solely on a Vector DB. You need a “Hybrid Data Store” where operational data lives in Postgres and semantic data lives in Pinecone.

Data TypeStorageTooling
User ProfilesRelationalPrisma/Supabase
Chat HistoryNoSQL/Key-ValueRedis
Knowledge BaseVector StorePinecone/Weaviate
File MetadataRelationalPostgres

<InteractiveQuiz quizId=“full-stack-pattern” question=“In a Full-Stack AI architecture, which component handles semantic lookup across large datasets?” options={[“PostgreSQL”, “Vector Database (e.g. Pinecone)”, “Redis Cache”, “React Native”]} correctAnswer={1} explanation=“While Postgres handles relational data, a Vector Database is specialized for semantic similarity search in AI applications.” />