🚀 Full-Stack AI Applications
import ContributionButtons from ’../../../../components/ContributionButtons.astro’; import UsageTracker from ’../../../../components/UsageTracker.astro’; import AuthorshipBadge from ’../../../../components/AuthorshipBadge.astro’; import GreaterGoodBadge from ’../../../../components/GreaterGoodBadge.astro’; import CookbookAsCode from ’../../../../components/CookbookAsCode.astro’; import LearningPath from ’../../../../components/LearningPath.astro’; import InteractiveQuiz from ’../../../../components/InteractiveQuiz.astro’; import UnderstandingButton from ’../../../../components/UnderstandingButton.astro’;
🌳 Forest-Level Concept
Section titled “🌳 Forest-Level Concept”Label: The Full-Stack AI Architectural Pattern
Building a “Full-Stack AI” application is fundamentally different from traditional web development. While traditional apps are primarily CRUD (Create, Read, Update, Delete) systems, AI applications are Probabilistic Reasoning Systems. This means your architecture must handle non-deterministic outputs, long-running processes (streaming), and complex state management across the client and server.
The Modern AI Stack
Section titled “The Modern AI Stack”- Orchestration Layer: Python (LangChain/LlamaIndex) or Node.js (Vercel AI SDK)
- Logic Layer: AI Agents & Compound Systems
- Data Layer: Vector Databases (Pinecone/Milvus) + Relational DBs (Postgres/Supabase)
- Interface Layer: React/Next.js with real-time streaming
🌿 Growing: Core Architecture Patterns
Section titled “🌿 Growing: Core Architecture Patterns”1. The Streaming Loop
Section titled “1. The Streaming Loop”Streaming is not a luxury in AI apps; it’s a UX requirement. Waiting 30 seconds for a full LLM response causes user abandonment.
// frontend/hooks/useChat.ts (Next.js + Vercel AI SDK)import { useChat } from 'ai/react';
export default function Chat() { const { messages, input, handleInputChange, handleSubmit } = useChat({ api: '/api/chat', onResponse: (response) => { console.log('Started receiving response'); }, });
return ( <div className="flex flex-col w-full max-w-md py-24 mx-auto stretch"> {messages.map(m => ( <div key={m.id} className="whitespace-pre-wrap"> {m.role === 'user' ? 'User: ' : 'AI: '} {m.content} </div> ))}
<form onSubmit={handleSubmit}> <input className="fixed bottom-0 w-full max-w-md p-2 mb-8 border border-gray-300 rounded shadow-xl" value={input} placeholder="Say something..." onChange={handleInputChange} /> </form> </div> );}2. State Management for Agents
Section titled “2. State Management for Agents”Unlike simple chat-bots, AI agents often need to maintain asynchronous state. If an agent is searching the web, it shouldn’t block the UI.
# backend/agent_service.py (FastAPI + LangGraph)from langgraph.graph import StateGraph, ENDfrom typing import TypedDict, List
class AgentState(TypedDict): task: str plan: List[str] results: List[str] is_complete: bool
def planner(state: AgentState): # Logic to break down task return {"plan": ["search_web", "summarize"]}
def researcher(state: AgentState): # Logic to perform research return {"results": ["Found info on X"]}
workflow = StateGraph(AgentState)workflow.add_node("planner", planner)workflow.add_node("researcher", researcher)workflow.set_entry_point("planner")workflow.add_edge("planner", "researcher")workflow.add_edge("researcher", END)
app = workflow.compile()🌳 Forest: Deep Systems Integration
Section titled “🌳 Forest: Deep Systems Integration”Database Topology: The Hybrid Approach
Section titled “Database Topology: The Hybrid Approach”You can’t rely solely on a Vector DB. You need a “Hybrid Data Store” where operational data lives in Postgres and semantic data lives in Pinecone.
| Data Type | Storage | Tooling |
|---|---|---|
| User Profiles | Relational | Prisma/Supabase |
| Chat History | NoSQL/Key-Value | Redis |
| Knowledge Base | Vector Store | Pinecone/Weaviate |
| File Metadata | Relational | Postgres |
🎓 Knowledge Check
Section titled “🎓 Knowledge Check”<InteractiveQuiz quizId=“full-stack-pattern” question=“In a Full-Stack AI architecture, which component handles semantic lookup across large datasets?” options={[“PostgreSQL”, “Vector Database (e.g. Pinecone)”, “Redis Cache”, “React Native”]} correctAnswer={1} explanation=“While Postgres handles relational data, a Vector Database is specialized for semantic similarity search in AI applications.” />