Skip to content

๐ŸŽจ Model Garden & Foundation Models

Label: Your Gateway to AI Model Diversity

A Model Garden is a centralized platform where you can discover, customize, and deploy foundation models from multiple providers. Think of it as an app store for AI modelsโ€”browse, test, and deploy the perfect model for your needs.

Model Garden (available on platforms like Googleโ€™s Vertex AI) provides:

  • ๐ŸŽฏ Curated Selection: 200+ models from various providers
  • ๐Ÿข Diverse Sources: Google, Anthropic, Meta, Mistral, and more
  • ๐Ÿ”ง Customization Tools: Fine-tune models for your use case
  • ๐Ÿš€ Easy Deployment: One-click deployment to production
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ Model Garden Platform โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ โ”‚
โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚
โ”‚ โ”‚ Google โ”‚ โ”‚Anthropic โ”‚ โ”‚ Meta โ”‚ โ”‚
โ”‚ โ”‚ Models โ”‚ โ”‚ Claude โ”‚ โ”‚ Llama โ”‚ โ”‚
โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚
โ”‚ โ”‚
โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚
โ”‚ โ”‚ Mistral โ”‚ โ”‚ Cohere โ”‚ โ”‚ Open โ”‚ โ”‚
โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ Source โ”‚ โ”‚
โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚
โ”‚ โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

Foundation models are large-scale AI models trained on vast amounts of data that can be adapted for many different tasks:

  • Pre-trained: Already learned from massive datasets
  • Adaptable: Fine-tune for specific use cases
  • General-purpose: Versatile across domains
  • Transfer learning: Apply knowledge to new problems
# Example: Using Llama for code generation
from model_garden import LlamaModel
llama = LlamaModel("llama-3-70b")
response = llama.generate(
prompt="""
Create a Python function that calculates
the Fibonacci sequence up to n terms.
""",
max_tokens=500,
temperature=0.2 # Lower for more deterministic code
)
print(response)

Best for:

  • Code generation
  • Technical documentation
  • Logical reasoning
  • Open-source flexibility
# Example: Using Claude for analysis
from model_garden import ClaudeModel
claude = ClaudeModel("claude-3-opus")
analysis = claude.analyze(
document=customer_feedback,
task="sentiment_analysis",
parameters={
"include_reasoning": True,
"categorize_themes": True
}
)
print(analysis)

Best for:

  • Long-context understanding
  • Detailed analysis
  • Safety-conscious outputs
  • Complex reasoning
# Example: Multimodal analysis with Gemini
from model_garden import GeminiModel
gemini = GeminiModel("gemini-pro-vision")
result = gemini.analyze_multimodal(
inputs=[
{"type": "image", "source": "product_photo.jpg"},
{"type": "text", "content": "Describe this product and suggest improvements"}
]
)
print(result)

Best for:

  • Multimodal tasks (text + images)
  • Large context windows
  • Integration with Google ecosystem
  • Scientific and technical content
# Example: Efficient inference with Mistral
from model_garden import MistralModel
mistral = MistralModel("mistral-large")
response = mistral.chat(
messages=[
{"role": "system", "content": "You are a helpful coding assistant"},
{"role": "user", "content": "Explain async/await in Python"}
],
stream=True # Stream tokens for faster perceived response
)
for chunk in response:
print(chunk, end='', flush=True)

Best for:

  • Cost-effective inference
  • Fast response times
  • European data compliance
  • Efficient fine-tuning
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ What's your primary need? โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
โ”‚
โ”œโ”€โ†’ Multimodal? โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ†’ Gemini Pro Vision
โ”‚
โ”œโ”€โ†’ Long Context? โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ†’ Claude 3 Opus
โ”‚
โ”œโ”€โ†’ Code Generation? โ”€โ”€โ”€โ”€โ”€โ†’ Llama 3 / Codex
โ”‚
โ”œโ”€โ†’ Cost Efficiency? โ”€โ”€โ”€โ”€โ”€โ†’ Mistral / Smaller models
โ”‚
โ””โ”€โ†’ Custom Domain? โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ†’ Fine-tune base model

Scenario: Building a Customer Support Agent

class CustomerSupportAgent:
def __init__(self):
# Use different models for different tasks
self.sentiment_model = self.load_model("claude-3-sonnet")
self.response_model = self.load_model("mistral-large")
self.image_model = self.load_model("gemini-pro-vision")
def handle_ticket(self, ticket):
# Analyze sentiment with Claude (best for nuanced understanding)
sentiment = self.sentiment_model.analyze(ticket.text)
# Generate response with Mistral (cost-effective for generation)
if ticket.has_image:
# Use Gemini for image-containing tickets
context = self.image_model.analyze_image(ticket.image)
response = self.response_model.generate(
context=context,
sentiment=sentiment
)
else:
response = self.response_model.generate(
ticket=ticket.text,
sentiment=sentiment
)
return response
from model_garden import ModelGarden
# Step 1: Select base model
garden = ModelGarden()
base_model = garden.get_model("llama-3-8b")
# Step 2: Prepare training data
training_data = [
{
"input": "User reported login issue: 'Cannot access account'",
"output": "I'll help you with the login issue. First, let's verify..."
},
# More examples...
]
# Step 3: Fine-tune
fine_tuned_model = base_model.fine_tune(
training_data=training_data,
epochs=3,
learning_rate=2e-5,
validation_split=0.2
)
# Step 4: Deploy
deployment = garden.deploy(
model=fine_tuned_model,
name="customer-support-specialist",
replicas=2,
auto_scaling=True
)
# 1. Initialize Model Garden client
from model_garden import ModelGardenClient
client = ModelGardenClient(
project="your-project",
region="us-central1"
)
# 2. List available models
models = client.list_models(
filters={"provider": "open-source", "task": "text-generation"}
)
for model in models:
print(f"{model.name}: {model.description}")
# 3. Try a model
model = client.load_model("llama-3-8b")
result = model.generate("Explain quantum computing in simple terms")
print(result)
# 4. Deploy if satisfied
if user_satisfied(result):
endpoint = client.deploy_model(
model="llama-3-8b",
endpoint_name="my-first-agent"
)
print(f"Deployed at: {endpoint.url}")
class IntelligentRouter:
"""
Routes requests to optimal model based on task characteristics
"""
def __init__(self):
self.models = {
"creative": "claude-3-opus",
"analytical": "gpt-4",
"code": "llama-3-70b",
"vision": "gemini-pro-vision",
"fast": "mistral-7b"
}
self.loaded_models = {}
def route_request(self, request):
# Analyze request characteristics
task_type = self.classify_task(request)
# Select optimal model
model_name = self.models.get(task_type, "fast")
# Load if not cached
if model_name not in self.loaded_models:
self.loaded_models[model_name] = self.load_model(model_name)
# Execute
return self.loaded_models[model_name].generate(request)
def classify_task(self, request):
"""Determine task type from request"""
if self.contains_code(request):
return "code"
elif self.has_image(request):
return "vision"
elif self.needs_deep_reasoning(request):
return "analytical"
elif self.is_creative(request):
return "creative"
else:
return "fast"
  • Model Garden centralizes access to 200+ foundation models
  • Choose models strategically based on task requirements
  • Mix and match different models for optimal results
  • Fine-tune when needed for domain-specific performance
  • Start simple with pre-trained models, customize as needed

Use cheaper models for simple tasks, escalate to powerful models for complex ones

Combine outputs from multiple models for higher accuracy

Direct different request types to specialist models

Continue to Memory Management to learn how to give your agents context and personalization capabilities.


๐Ÿ’ก Pro Tip: Start with smaller models during development, then upgrade to larger ones for production when you understand your requirements better.