๐จ Model Garden & Foundation Models
๐ฑ Seedling Concept
Section titled โ๐ฑ Seedling ConceptโLabel: Your Gateway to AI Model Diversity
A Model Garden is a centralized platform where you can discover, customize, and deploy foundation models from multiple providers. Think of it as an app store for AI modelsโbrowse, test, and deploy the perfect model for your needs.
What is Model Garden?
Section titled โWhat is Model Garden?โPlatform Overview
Section titled โPlatform OverviewโModel Garden (available on platforms like Googleโs Vertex AI) provides:
- ๐ฏ Curated Selection: 200+ models from various providers
- ๐ข Diverse Sources: Google, Anthropic, Meta, Mistral, and more
- ๐ง Customization Tools: Fine-tune models for your use case
- ๐ Easy Deployment: One-click deployment to production
Provider Ecosystem
Section titled โProvider Ecosystemโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ Model Garden Platform โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโคโ โโ โโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโ โโ โ Google โ โAnthropic โ โ Meta โ โโ โ Models โ โ Claude โ โ Llama โ โโ โโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโ โโ โโ โโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโ โโ โ Mistral โ โ Cohere โ โ Open โ โโ โ โ โ โ โ Source โ โโ โโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโ โโ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ๐ฟ Understanding Foundation Models
Section titled โ๐ฟ Understanding Foundation ModelsโWhat are Foundation Models?
Section titled โWhat are Foundation Models?โFoundation models are large-scale AI models trained on vast amounts of data that can be adapted for many different tasks:
- Pre-trained: Already learned from massive datasets
- Adaptable: Fine-tune for specific use cases
- General-purpose: Versatile across domains
- Transfer learning: Apply knowledge to new problems
Popular Foundation Model Families
Section titled โPopular Foundation Model Familiesโ1. Llama Family (Meta)
Section titled โ1. Llama Family (Meta)โ# Example: Using Llama for code generationfrom model_garden import LlamaModel
llama = LlamaModel("llama-3-70b")
response = llama.generate( prompt=""" Create a Python function that calculates the Fibonacci sequence up to n terms. """, max_tokens=500, temperature=0.2 # Lower for more deterministic code)
print(response)Best for:
- Code generation
- Technical documentation
- Logical reasoning
- Open-source flexibility
2. Claude (Anthropic)
Section titled โ2. Claude (Anthropic)โ# Example: Using Claude for analysisfrom model_garden import ClaudeModel
claude = ClaudeModel("claude-3-opus")
analysis = claude.analyze( document=customer_feedback, task="sentiment_analysis", parameters={ "include_reasoning": True, "categorize_themes": True })
print(analysis)Best for:
- Long-context understanding
- Detailed analysis
- Safety-conscious outputs
- Complex reasoning
3. Gemini (Google)
Section titled โ3. Gemini (Google)โ# Example: Multimodal analysis with Geminifrom model_garden import GeminiModel
gemini = GeminiModel("gemini-pro-vision")
result = gemini.analyze_multimodal( inputs=[ {"type": "image", "source": "product_photo.jpg"}, {"type": "text", "content": "Describe this product and suggest improvements"} ])
print(result)Best for:
- Multimodal tasks (text + images)
- Large context windows
- Integration with Google ecosystem
- Scientific and technical content
4. Mistral Models
Section titled โ4. Mistral Modelsโ# Example: Efficient inference with Mistralfrom model_garden import MistralModel
mistral = MistralModel("mistral-large")
response = mistral.chat( messages=[ {"role": "system", "content": "You are a helpful coding assistant"}, {"role": "user", "content": "Explain async/await in Python"} ], stream=True # Stream tokens for faster perceived response)
for chunk in response: print(chunk, end='', flush=True)Best for:
- Cost-effective inference
- Fast response times
- European data compliance
- Efficient fine-tuning
๐ก Choosing the Right Model
Section titled โ๐ก Choosing the Right ModelโDecision Framework
Section titled โDecision Frameworkโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ What's your primary need? โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ โโโ Multimodal? โโโโโโโโโโโ Gemini Pro Vision โ โโโ Long Context? โโโโโโโโโ Claude 3 Opus โ โโโ Code Generation? โโโโโโ Llama 3 / Codex โ โโโ Cost Efficiency? โโโโโโ Mistral / Smaller models โ โโโ Custom Domain? โโโโโโโโ Fine-tune base modelPractical Selection Example
Section titled โPractical Selection ExampleโScenario: Building a Customer Support Agent
class CustomerSupportAgent: def __init__(self): # Use different models for different tasks self.sentiment_model = self.load_model("claude-3-sonnet") self.response_model = self.load_model("mistral-large") self.image_model = self.load_model("gemini-pro-vision")
def handle_ticket(self, ticket): # Analyze sentiment with Claude (best for nuanced understanding) sentiment = self.sentiment_model.analyze(ticket.text)
# Generate response with Mistral (cost-effective for generation) if ticket.has_image: # Use Gemini for image-containing tickets context = self.image_model.analyze_image(ticket.image) response = self.response_model.generate( context=context, sentiment=sentiment ) else: response = self.response_model.generate( ticket=ticket.text, sentiment=sentiment )
return response๐ฌ Deep Dive: Model Customization
Section titled โ๐ฌ Deep Dive: Model CustomizationโFine-Tuning on Model Garden
Section titled โFine-Tuning on Model Gardenโfrom model_garden import ModelGarden
# Step 1: Select base modelgarden = ModelGarden()base_model = garden.get_model("llama-3-8b")
# Step 2: Prepare training datatraining_data = [ { "input": "User reported login issue: 'Cannot access account'", "output": "I'll help you with the login issue. First, let's verify..." }, # More examples...]
# Step 3: Fine-tunefine_tuned_model = base_model.fine_tune( training_data=training_data, epochs=3, learning_rate=2e-5, validation_split=0.2)
# Step 4: Deploydeployment = garden.deploy( model=fine_tuned_model, name="customer-support-specialist", replicas=2, auto_scaling=True)โก Quick Win: Getting Started with Model Garden
Section titled โโก Quick Win: Getting Started with Model Gardenโ5-Minute Setup
Section titled โ5-Minute Setupโ# 1. Initialize Model Garden clientfrom model_garden import ModelGardenClient
client = ModelGardenClient( project="your-project", region="us-central1")
# 2. List available modelsmodels = client.list_models( filters={"provider": "open-source", "task": "text-generation"})
for model in models: print(f"{model.name}: {model.description}")
# 3. Try a modelmodel = client.load_model("llama-3-8b")result = model.generate("Explain quantum computing in simple terms")print(result)
# 4. Deploy if satisfiedif user_satisfied(result): endpoint = client.deploy_model( model="llama-3-8b", endpoint_name="my-first-agent" ) print(f"Deployed at: {endpoint.url}")๐ณ Advanced: Multi-Model Architecture
Section titled โ๐ณ Advanced: Multi-Model ArchitectureโBuilding a Hybrid System
Section titled โBuilding a Hybrid Systemโclass IntelligentRouter: """ Routes requests to optimal model based on task characteristics """ def __init__(self): self.models = { "creative": "claude-3-opus", "analytical": "gpt-4", "code": "llama-3-70b", "vision": "gemini-pro-vision", "fast": "mistral-7b" } self.loaded_models = {}
def route_request(self, request): # Analyze request characteristics task_type = self.classify_task(request)
# Select optimal model model_name = self.models.get(task_type, "fast")
# Load if not cached if model_name not in self.loaded_models: self.loaded_models[model_name] = self.load_model(model_name)
# Execute return self.loaded_models[model_name].generate(request)
def classify_task(self, request): """Determine task type from request""" if self.contains_code(request): return "code" elif self.has_image(request): return "vision" elif self.needs_deep_reasoning(request): return "analytical" elif self.is_creative(request): return "creative" else: return "fast"๐ฏ Key Takeaways
Section titled โ๐ฏ Key Takeawaysโ- Model Garden centralizes access to 200+ foundation models
- Choose models strategically based on task requirements
- Mix and match different models for optimal results
- Fine-tune when needed for domain-specific performance
- Start simple with pre-trained models, customize as needed
Real-World Success Patterns
Section titled โReal-World Success PatternsโPattern 1: Cascade Architecture
Section titled โPattern 1: Cascade ArchitectureโUse cheaper models for simple tasks, escalate to powerful models for complex ones
Pattern 2: Ensemble Approach
Section titled โPattern 2: Ensemble ApproachโCombine outputs from multiple models for higher accuracy
Pattern 3: Specialized Routing
Section titled โPattern 3: Specialized RoutingโDirect different request types to specialist models
Next Steps
Section titled โNext StepsโContinue to Memory Management to learn how to give your agents context and personalization capabilities.
๐ก Pro Tip: Start with smaller models during development, then upgrade to larger ones for production when you understand your requirements better.