๐ค Agent Development Kits (ADK) Overview
๐ฟ Growing Concept
Section titled โ๐ฟ Growing ConceptโLabel: Your Toolkit for Building AI Agents
An Agent Development Kit (ADK) is an open-source, code-first toolkit for building, evaluating, and deploying AI agents. ADKs provide the foundational components and patterns you need to create sophisticated multi-agent systems.
What is an ADK?
Section titled โWhat is an ADK?โCore Components
Section titled โCore Componentsโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ Agent Development Kit (ADK) โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโคโ โโ โโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโ โโ โ Agents โ โ Tools โ โโ โ Framework โ โ Ecosystem โ โโ โโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโ โโ โโ โโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโ โโ โOrchestrationโ โ Evaluation โ โโ โ Engine โ โ Framework โ โโ โโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโ โโ โโ โโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโ โโ โ Deployment โ โ Monitoring โ โโ โ Tools โ โ & Logging โ โโ โโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ๐ก Why Use an ADK?
Section titled โ๐ก Why Use an ADK?โMulti-Agent by Design
Section titled โMulti-Agent by DesignโADKs are built for multi-agent systems from the ground up:
from adk import Agent, Workflow
# Define specialized agentsresearcher = Agent( name="Researcher", role="Information Gatherer", tools=[web_search, database_query])
analyst = Agent( name="Analyst", role="Data Processor", tools=[data_analysis, visualization])
writer = Agent( name="Writer", role="Content Creator", tools=[document_generator, style_checker])
# Orchestrate them togetherworkflow = Workflow(agents=[researcher, analyst, writer])result = workflow.run("Create a market analysis report")Rich Tool Ecosystem
Section titled โRich Tool EcosystemโADKs connect to existing tools and data:
Your Agent (via ADK) โ โโโโ Productivity Tools (Notion, Slack, Email) โ โโโโ Business Systems (HubSpot, Salesforce) โ โโโโ Development Tools (GitHub, Jira) โ โโโโ Tool Frameworks (LangChain, LlamaIndex) โ โโโโ Agent Frameworks (LangGraph, CrewAI)๐ฌ Deep Dive: ADK Capabilities
Section titled โ๐ฌ Deep Dive: ADK Capabilitiesโ1. Flexible Orchestration
Section titled โ1. Flexible OrchestrationโADKs support multiple orchestration patterns:
Sequential Execution
Section titled โSequential Executionโclass SequentialWorkflow: """ Execute agents one after another """ def __init__(self, agents: List[Agent]): self.agents = agents
async def execute(self, task: str) -> dict: """ Each agent processes output from previous agent """ result = {"input": task}
for agent in self.agents: result = await agent.process(result) print(f"{agent.name} completed: {result['status']}")
return result
# Example: Content creation pipelineworkflow = SequentialWorkflow([ researcher, # Gathers information analyst, # Analyzes data writer # Creates content])
result = await workflow.execute("Write about AI trends")Parallel Execution
Section titled โParallel Executionโclass ParallelWorkflow: """ Execute multiple agents simultaneously """ def __init__(self, agents: List[Agent]): self.agents = agents
async def execute(self, task: str) -> dict: """ All agents work on same task in parallel """ # Execute all agents concurrently results = await asyncio.gather(*[ agent.process(task) for agent in self.agents ])
# Combine results combined = self.merge_results(results)
return combined
# Example: Multi-perspective analysisworkflow = ParallelWorkflow([ technical_analyst, business_analyst, user_experience_analyst])
analysis = await workflow.execute("Evaluate this product feature")Dynamic Orchestration
Section titled โDynamic Orchestrationโclass DynamicWorkflow: """ Adapt execution based on intermediate results """ def __init__(self, coordinator: Agent, specialists: dict[Agent]): self.coordinator = coordinator self.specialists = specialists
async def execute(self, task: str) -> dict: """ Coordinator decides which specialists to engage """ # Coordinator analyzes task plan = await self.coordinator.create_plan(task)
results = {} for step in plan['steps']: # Select appropriate specialist specialist = self.specialists[step['agent_type']]
# Execute with context from previous steps result = await specialist.process(step['subtask'], context=results) results[step['id']] = result
# Coordinator evaluates progress evaluation = await self.coordinator.evaluate(results) if evaluation['should_adjust']: plan = await self.coordinator.replan(task, results)
return results
# Example: Adaptive project managementcoordinator = Agent("Project Manager", tools=[planning, evaluation])specialists = { "code": Agent("Developer", tools=[code_generation, testing]), "design": Agent("Designer", tools=[ui_design, prototyping]), "docs": Agent("Technical Writer", tools=[documentation])}
workflow = DynamicWorkflow(coordinator, specialists)result = await workflow.execute("Build user authentication feature")2. Tool Integration
Section titled โ2. Tool IntegrationโConnecting to External Services
Section titled โConnecting to External Servicesโfrom adk import Tool, Agent
# Define tools@Tooldef search_notion(query: str) -> dict: """ Search Notion workspace for documents
Args: query: Search query string
Returns: dict: Search results with page titles and content """ notion_client = NotionClient(api_key=NOTION_API_KEY) results = notion_client.search(query) return { "results": results, "count": len(results) }
@Tooldef send_slack_message(channel: str, message: str) -> dict: """ Send message to Slack channel
Args: channel: Slack channel name message: Message content
Returns: dict: Message delivery status """ slack_client = SlackClient(token=SLACK_TOKEN) response = slack_client.chat_postMessage( channel=channel, text=message ) return {"status": "sent", "timestamp": response['ts']}
@Tooldef update_hubspot_contact(contact_id: str, updates: dict) -> dict: """ Update HubSpot contact record
Args: contact_id: HubSpot contact identifier updates: Dictionary of fields to update
Returns: dict: Updated contact information """ hubspot_client = HubSpotClient(api_key=HUBSPOT_API_KEY) contact = hubspot_client.contacts.update(contact_id, updates) return contact
# Create agent with toolsassistant = Agent( name="ProductivityAssistant", tools=[search_notion, send_slack_message, update_hubspot_contact], instructions=""" You are a productivity assistant that helps users: 1. Find information in Notion 2. Communicate via Slack 3. Manage contacts in HubSpot
Use the appropriate tool for each task. """)
# Agent automatically uses tools as neededresponse = await assistant.process( "Find the Q4 planning doc in Notion and share it in #strategy channel")3. Integration with Agent Frameworks
Section titled โ3. Integration with Agent FrameworksโUsing LangChain Tools
Section titled โUsing LangChain Toolsโfrom langchain.tools import Tool as LangChainToolfrom adk import Agent, adapt_langchain_tool
# Adapt LangChain tools for ADKlangchain_tool = LangChainTool( name="Calculator", func=lambda x: eval(x), description="Performs mathematical calculations")
adk_tool = adapt_langchain_tool(langchain_tool)
# Use in ADK agentcalculator_agent = Agent( name="MathAssistant", tools=[adk_tool])Integrating with CrewAI
Section titled โIntegrating with CrewAIโfrom crewai import Crew, Taskfrom adk import Agent as ADKAgent
# Bridge ADK agents with CrewAIdef adk_to_crewai(adk_agent: ADKAgent): """Convert ADK agent to CrewAI agent""" return CrewAgent( role=adk_agent.role, goal=adk_agent.goal, backstory=adk_agent.backstory, tools=adk_agent.tools )
# Use both frameworks togetheradk_researcher = ADKAgent("Researcher", tools=[web_search])crew_writer = CrewAgent(role="Writer", tools=[content_gen])
crew = Crew( agents=[adk_to_crewai(adk_researcher), crew_writer])4. Sharing via MCP and A2A
Section titled โ4. Sharing via MCP and A2AโMCP Integration
Section titled โMCP Integrationโfrom adk import Agent, MCPServer
# Create agent with MCP serveragent = Agent("DocumentExpert", tools=[doc_search, doc_summary])
# Expose agent via MCPmcp_server = MCPServer(agent)mcp_server.start(port=8080)
# Now any MCP-compatible client can use this agentA2A Communication
Section titled โA2A Communicationโfrom adk import Agent, A2AClient
class CollaborativeAgent(Agent): """ Agent that can collaborate with other agents via A2A """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.a2a_client = A2AClient()
async def collaborate(self, task: str): """ Delegate subtasks to specialist agents """ # Analyze task subtasks = await self.break_down_task(task)
# Find appropriate agents via A2A for subtask in subtasks: specialist = await self.a2a_client.find_agent( capability=subtask['required_skill'] )
# Delegate via A2A protocol result = await self.a2a_client.send_request( agent_id=specialist['id'], task=subtask['description'], context=subtask['context'] )
self.incorporate_result(result)
# Usageagent = CollaborativeAgent("Coordinator")result = await agent.collaborate("Create comprehensive market report")# Agent automatically finds and delegates to research, analysis, and writing agents๐ฏ Choosing the Right ADK
Section titled โ๐ฏ Choosing the Right ADKโDecision Matrix
Section titled โDecision Matrixโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ What's Your Priority? โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ โโโ Quick Prototyping โโโโโโโ LangChain โ + Simple ADK wrapper โ โโโ Production Scale โโโโโโโโโ Full-featured ADK โ (Google ADK, etc.) โ โโโ Team Collaboration โโโโโโโ CrewAI-compatible ADK โ โโโ Custom Workflows โโโโโโโโโ LangGraph โ + ADK integration โ โโโ Research/Experimentation โ Lightweight custom ADKPopular ADK Choices
Section titled โPopular ADK Choicesโ1. Google Agent Development Kit
Section titled โ1. Google Agent Development KitโBest for: Enterprise applications, production deployment
from google_adk import Agent, Workflow
agent = Agent.from_config("config.yaml")workflow = Workflow.create(agents=[agent])2. LangChain + Custom Orchestration
Section titled โ2. LangChain + Custom OrchestrationโBest for: Rapid prototyping, rich tool ecosystem
from langchain.agents import create_agentfrom custom_adk import Orchestrator
agent = create_agent(tools=[...])orchestrator = Orchestrator([agent])3. Custom Python ADK
Section titled โ3. Custom Python ADKโBest for: Full control, specialized requirements
class CustomADK: def create_agent(self, config): # Your implementation passโก Quick Win: Build Your First Multi-Agent System
Section titled โโก Quick Win: Build Your First Multi-Agent Systemโ30-Minute Implementation
Section titled โ30-Minute Implementationโfrom adk import Agent, SequentialWorkflow
# Step 1: Define agentstask_breakdown_agent = Agent( name="Task Breakdown Agent", instructions="Analyze tasks and break them into subtasks")
execution_agents = [ Agent(name="Code Agent", instructions="Generate code"), Agent(name="Design Agent", instructions="Create designs"), Agent(name="Docs Agent", instructions="Write documentation")]
review_agent = Agent( name="Review Agent", instructions="Quality check all outputs")
# Step 2: Create workflowworkflow = SequentialWorkflow([ task_breakdown_agent, *execution_agents, review_agent])
# Step 3: Executeresult = await workflow.run( "Build a user authentication system with docs")
print(f"Project completed: {result['status']}")๐ณ Advanced: Custom ADK Architecture
Section titled โ๐ณ Advanced: Custom ADK ArchitectureโBuilding Your Own ADK
Section titled โBuilding Your Own ADKโclass CustomADK: """ Custom ADK with specialized features """ def __init__(self): self.agents = {} self.workflows = {} self.tool_registry = ToolRegistry()
def register_agent(self, agent: Agent): """Register an agent""" self.agents[agent.id] = agent agent.set_tool_registry(self.tool_registry)
def create_workflow(self, workflow_type: str, config: dict): """Factory for creating workflows""" if workflow_type == "sequential": return SequentialWorkflow(config) elif workflow_type == "parallel": return ParallelWorkflow(config) elif workflow_type == "dynamic": return DynamicWorkflow(config) else: raise ValueError(f"Unknown workflow type: {workflow_type}")
def deploy(self, agent: Agent, platform: str): """Deploy agent to production platform""" deployer = DeploymentManager(platform) endpoint = deployer.deploy(agent) return endpoint๐ฏ Key Takeaways
Section titled โ๐ฏ Key Takeawaysโ- ADKs provide comprehensive toolkits for agent development
- Multi-agent orchestration is built-in and flexible
- Tool integration connects agents to real-world systems
- Framework compatibility lets you mix and match approaches
- MCP and A2A enable sharing and collaboration
Next Steps
Section titled โNext StepsโContinue to Agent Types to learn about different agent architectures and when to use each.
๐ก Pro Tip: Start with an established ADK for your first project, then customize or build your own as you understand your specific needs.